
GASPI Proposal: Memory provided by
applications

Rui Machado
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Mirko Rahn
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Daniel Grünewald
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Valeria Bartsch
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

July 1, 2015

Abstract

This proposal targets at version 1.01 from November 14th, 2013
of the Gaspi specification. It proposes to extend the interface by two
functions, to add a new type and to clarify at two places.

The proposed extensions allow applications to provide memory to
the Gaspi environment and use it for further communication.

1 Motivation and Use-case(s)

We have identified a missing feature: The possibility for the user to provide
an already existing memory buffer as the memory space of a GASPI segment.
Currently the creation of segments requires the user to provide an identifier
and size while the GASPI implementation allocates that space. This proposal
would allow the user to provide an already allocated buffer and register it
as a GASPI segment to be globally accessible for communication. Such

1

functionality not only is generally more flexible but it also allows an even
better support of different kinds of memory (e. g. NVRAM and accellerators).

Also there is a concrete use case the would get improved performance:
Data exchange between two Gaspi applications A and B on a common subset
of hosts: At the moment the segments of A and B can not overlap (as they
are created by the independent Gaspi runtime’s of A and B), so at least one
copy of the data is required, using for example shared memory. That copy
(or copies) can be eliminated.

2 Proposed interface

In section 4.1 add:

begin addition

gaspi memory description t

The Gaspi memory description type used to describe properties of user pro-
vided memory. y

Implementor advice: The intention of gaspi memory description

t is to describe properties of memory that is provided by the ap-
plication, e.g. MEMORY GPU or MEMORY HOST might be relevant to an
implementation. y

end addition

In section 7.2 add the two functions gaspi segment bind and gaspi

segment use:

begin addition

[section number] gaspi segment bind

The synchronous local blocking procedure gaspi segment bind binds a seg-
ment id to user provided memory.

2

GASPI_SEGMENT_BIND (segment_id

, memory_description

, pointer

, size

)

Parameter:
(in) segment id: Unique segment ID to bind.
(in) memory description: The description of the memory provided.
(in) pointer: The begin of the memory provided by the user.
(in) size: The size of the memory provided by pointer in bytes.

gaspi_return_t

gaspi_segment_bind

(gaspi_segment_id_t const segment_id

, gaspi_memory_description_t const memory_description

, gaspi_pointer_t const pointer

, gaspi_size_t const size

)

TODO: FORTRAN INTERFACE

Execution phase:
Working

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI TIMEOUT: operation has run into timeout
GASPI ERROR: operation has finished with an error y

gaspi segment bind binds the segment identified by the identifier seg-
ment id to the user provided memory of size size located at the address
pointer. To provide less than size bytes results in undefined behavior. The
identifier segment id must be unique in the local Gaspi process. Bind to a
segment with an existing segment ID (regardless of bind or allocated) results
in undefined behavior. Note that the total number of segments is restricted
by the underlying hardware capabilities. The maximum number of supported
segments can be retrieved by invoking gaspi segment max.

3

To bind successfully the user provided memory must satisfy implementa-
tion specific constraints, e. g. alignment constraints.

After successful procedure completion, i. e. return value GASPI SUCCESS,
the segment can be accessed locally and has the same capabilities like a
segment that was allocated by a successful call to gaspi segment alloc.

If the procedure returns with GASPI ERROR, the bind has failed and the
segment can not be used.

User advice: A Gaspi implementation may allocate additional mem-
ory for internal management. Depending on the implementation it
might be required that the management memory must reside on the
same device as the provided memory. y

end addition

begin addition

[section number] gaspi segment use

The synchronous collective time-based blocking procedure gaspi segment

use is semantically equivalent to a collective aggregation of gaspi segment

bind, gaspi segment register and gaspi gaspi barrier involving all mem-
bers of a given group. If the communication infrastructure was not estab-
lished for all group members beforehand, gaspi segment use will accomplish
this as well.

GASPI_SEGMENT_USE (segment_id

, memory_description

, pointer

, size

, group

, timeout

)

Parameter:
(in) segment id: Unique segment ID to bind.

4

(in) memory description: The description of the memory provided.
(in) pointer: The begin of the memory provided by the user.
(in) size: The size of the memory provided by pointer in bytes.
(in) group: The group which should create the segment.
(in) timeout: The timeout for the operation.

gaspi_return_t

gaspi_segment_use

(gaspi_segment_id_t const segment_id

, gaspi_memory_description_t const memory_description

, gaspi_pointer_t const pointer

, gaspi_size_t const size

, gaspi_group_t const group

, gaspi_timeout_t const timeout

)

TODO: FORTRAN INTERFACE

Execution phase:
Working

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI TIMEOUT: operation has run into timeout
GASPI ERROR: operation has finished with an error y

gaspi segment use can be formulated in pseudo code as

GASPI_SEGMENT_USE (id, memory, pointer, size, group, timeout)

{

GASPI_SEGMENT_BIND (id, memory, pointer, size);

foreach (rank : group)

{

timeout -= GASPI_CONNECT (id, rank, timeout);

timeout -= GASPI_SEGMENT_REGISTER (id, rank, timeout);

}

GASPI_BARRIER (group, timeout);

}

5

where the call gets executed on all members of group.
end addition

In section 7.2.1 change the user advice to

begin change

User advice: A Gaspi implementation may allocate additional mem-
ory for internal management. Depending on the implementation it
might be required that the management memory must reside on the
same device as the allocated memory. y

end change

In section 7.3.1 change the first sentence of the description to:

begin change

User advice: gaspi segment delete releases the resources that were
acquired by Gaspi of the segment referenced by the segment id iden-
tifier. y

end change

3 Influence on Implementation

• additional indirection:

Introduces additional indirection to find area with meta-data.

Reason: It is impossible to put the memory required for management
(e.g. for notifications) directly before or after the memory any longer.
Therefore that memory must be allocated somewhere else and later on
its address looked up.

Costs: Low, the indirection is a table from segment id → pointer of
management area. Code that now says something like

6

manage_at (pointer[segment_id] - MANAGEMENT_MEMORY_SIZE)

would change to

manage_at (management[segment_id])

• additional error codes:

User provides memory that does not fit the restrictions. Preferable one
error code for each restriction, e.g. MEMORY NOT PROPERLY ALIGNED,

MEMORY SIZE NOT A MULTIPLE OF PAGESIZE, ...

4 Influence on Applications

4.1 Influence on Existing Applications

No influence.
Existing applications that want to use the new library must be re-linked

but not re-compiled.

4.2 Influence on Future Applications

The new function will allow future applications to communicate data from
memory that is not allocated by the Gaspi runtime system but provided to
it. Chains of Gaspi applications can work on the same data without copying
it.

5 Influence on Performance

We do not foresee any major impact on performance, neither from an imple-
mentation point of view nor from the application point of view.

(In high pressure notification situations it might be possible that the
additional indirection kicks in. On the other hand, in such situations the
lookup table is kept in processor cache and after all the process still wait for
the completion of a remote operation.)

7

6 Influence on Current Specification

Clarifications in user advices in 7.2.1 and 7.3.1.

8

