
GASPI Proposal: Queue creation and deletion

Rui Machado
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Mirko Rahn
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Daniel Grünewald
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

Valeria Bartsch
CC-HPC

Fraunhofer ITWM
Kaiserslautern, Germany

July 1, 2015

1 Motivation and Use-case(s)

The main motivation for this proposal is to improve the ability to create GASPI-
based libraries.

Currently, a GASPI-based library can use one of the available queues but
has to (potentially) share it with an application or other libraries. Moreover, a
clear separation of concerns is desirable from a library point of view. A library
is only interested in waiting for data or notification requests that are relevant
to its own internal operation.

The following code snippet illustrates how an application can use two differ-
ent libraries using the current standard. Each library accepts, as a parameter,
a communication queue. This communication queue will be used internally by
the library.

The application initializates each library and does its own application work
using the same queue.

1

Listing 1: Gaspi application using libraries.

1 #include <GASPI.h>
2 #include <mylib.h>
3 #include <myotherlib.h>
4

5 int
6 main(int argc, char *argv[])
7 {
8 ASSERT(gaspi_proc_init(GASPI_BLOCK));
9

10 /* Initialize my library and use Queue 0 for communication */
11 ASSERT(my_lib_init(libargs, (gaspi_queue_id_t) 0));
12

13 /* Initialize other library using Queue 0 for communication */
14 ASSERT(my_other_lib_init(libargs, (gaspi_queue_id_t) 0));
15

16 /* Do what I have to do */
17 my_own_work((gaspi_queue_id_t) 0);
18

19 /* Done! */
20 ASSERT (gaspi_proc_term(GASPI_BLOCK));
21

22 return 0;
23 }

All three instances (application and libraries) will have to share the queue,
leading to a non-optimal use from each instance’s point of view.

To fill this gap, we propose the creation of communication queues during
runtime which would be more dynamic.

This proposal includes the introduction of two new functions: gaspi queue create
and gaspi queue delete. With these functions, a library can create its own
communication queue(s), independent from the application (or other libraries).

2 Proposed interface

The proposed interface is as follows. We propose to add it to section 8.5 (Com-
munication utilities).

2.0.1 gaspi queue create

The gaspi queue create procedure is a synchronous non-local time-based block-
ing procedure which creates a new queue for communication.

GASPI_QUEUE_CREATE (queue
, timeout
)

Parameter:
(out) queue: the created queue

2

(in) timeout: the timeout

gaspi_return_t
gaspi_queue_create (gaspi_queue_id_t queue

, gaspi_timeout_t timeout
)

function gaspi_queue_create (queue, timeout) &
& result(res) bind (C, name="gaspi_queue_create")
integer(gaspi_queue_id_t) :: queue
integer(gaspi_timeout_t), value :: timeout
integer(gaspi_return_t) :: res
end function gaspi_queue_create

Execution phase:
Working

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI TIMEOUT: operation has run into timeout
GASPI ERROR: operation has finished with an error y

After successful procedure completion, i. e. return value GASPI SUCCESS, the
communication queue is created and available for communication requests on it.

If the procedure returns with GASPI TIMEOUT, the creation request could not
be completed during the given timeout. A subsequent call to gaspi queue
create has to be performed in order to complete the queue creation request.

If the procedure returns with GASPI ERROR, the queue creation failed. At-
tempts to post requests in the queue result in undefined behaviour.

User advice: The lifetime of a created queue should be kept as long as
possible, avoiding repetead cycles of creation/deletion of a queue. y

Implementor advice: The maximum number of allowed queues may be
limited in order to keep resources requirements low. y

Implementor advice: The communication infrastructure must be re-
spected i. e. previously established connections (e. g. invoking gaspi
connect) must be able to use the newly created queue. y

2.0.2 gaspi queue delete

The gaspi queue delete procedure is a synchronous non-local time-based block-
ing procedure which deletes a given queue.

GASPI_QUEUE_DELETE (queue)

Parameter:
(in) queue: the queue to delete

Execution phase:
Working

3

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI ERROR: operation has finished with an error y

gaspi_return_t
gaspi_queue_delete (gaspi_queue_id_t queue)

function gaspi_queue_delete (queue) &
& result(res) bind (C, name="gaspi_queue_delete")
integer(gaspi_queue_id_t), value :: queue
integer(gaspi_return_t) :: res
end function gaspi_queue_delete

Parameter:
(in) queue: the queue to delete

Execution phase:
Working

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI TIMEOUT: operation has run into timeout
GASPI ERROR: operation has finished with an error y

After successful procedure completion, i. e. return value GASPI SUCCESS, the
communication queue is deleted and no longer available for communication. It
is an application error to use the queue after gaspi queue delete has been
invoked.

If the procedure returns with GASPI ERROR, the delete request failed.

User advice: The procedure gaspi wait should be invoked before delet-
ing a queue in order to ensure that all posted requests (if any) are com-
pleted. y

3 Influence on Implementations

Existing implementations must obviously implement the two new procedures.

The possibility to dynamically create a queue will lead to a larger consump-
tion of system resources (e. g. memory).

4 Influence on Applications

4.1 Influence on Existing Applications

This proposal specifies two new functions an hence does not directly affect ex-
isting applications.

4

4.2 Influence on Future Applications

Future applications and, more importantly, applications that may benefit from
the proposed functionality need to be updated to use the proposed procedures,
compiled and linked anew with an implementation supporting the proposed
functionality.

5 Influence on Performance

The creation of a queue may require information exchange between processes.
An abusive use of the functionality may lead to high overhead and poor com-
munication performance.

6 Influence on Current Specification

The introduction of proposed functionality influences the result of the procedure
gaspi queue num (Section 12.3.1).

The meaning of the parameter queue num of process configuration structure
(Section 5.2) is also altered.

Paragraph 5 of Section 8.1 has to be updated:
From:
The number of communication queues and their size can be configured at

initialization time, otherwise default values will be used. The default values are
implementation dep endent. Maximum values are also dene.

To (proposed):

The number of communication queues and their size can be configured at ini-
tialization time - via process configuration - or created during run time - via
gaspi queue create. Otherwise default values will be used. The default values
are implementation dep endent. Maximum values are also defined.

5

