
Proposal to the Gaspi Specification

Inclusion of gaspi read notify

Christian Simmendinger and Vanessa End

January 25, 2016

Contents

1 Introduction and Motivation 1
1.0.1 gaspi read notify . 4

2 Needed Resources 6

3 Additional (necessary) Changes to the Standard 6

1 Introduction and Motivation

Moving towards the exascale era in high performance computing we see the
necessity to include a notifcation driven gaspi read notify routine into the
GASPI standard, which complements the existing gaspi write notify func-
tionality.

While a gaspi read notify features a variety of use cases (e.g. in dis-
tributed memory management) one of the more remarkable goals of this proposal
is to establish latency-tolerant multithreading in distributed memory systems.

To that end we first note that GASPI is able to sustain an extremely high
concurrency: the number of messages GASPI can keep in flight at any point in
time is (in first order) given by the product of the number of available queues
and the queue depth (queue num ∗ queue size max).

Following ideas which go back to the first of Cray’s MTA machines, we
hence can leverage Little’s law (bandwidth = concurrency/latency) and use
the high concurrency available in GASPI to effectively hide away latency for
remote read access in distributed memory systems. In doing so we gain e.g.
the ability to perform overhead-free graph traversal for non-partitionable (but
distributed) large-scale graphs. We note that the same general principle holds
true for all applications, which allow for a high concurrency: whenever we can
sustain high concurrency in fetching and evaluating remote data, Little’s law
will allow us to tolerate the corresponding read latency. This applies to all
forms of parallel graph-problems, parallel table lookups, parallel searches in a
data-base and many other use cases.

1

The two GASPI functions gaspi read notify and gaspi waitsome estab-
lish a logical and thread safe happens-before relation between them. Since
hitherto gaspi read and gaspi wait have to be issued by the same thread, the
procedure gaspi read notify significantly extends the general applicability of
remote read operations.

A typical use of gaspi read notify takes the following form:

Listing 1: gaspi read notify Example usage

1 // Pipelined read and processing of data

2 // The pipeline consists of the following two stages

3 // 1. Read remote data with a predefined number of chunks

4 // 2. Perform multithreaded waitsome, subsequent processing of

5 // the data chunks, and a consecutive read_notify in order to

6 // sustain the pipeline.

7

8 #include <GASPI.h>

9 #include <success_or_die.h>

10

11 extern void process(gaspi_segment_id_t segment_id_local

12 , gaspi_offset_t offset_local

13 , gaspi_size_t size

14 , gaspi_notification_id_t id

15);

16

17 // Note: For sake of simplicity we have omitted checking

18 // the number of used chunks vs. the actually available

19 // notification ressources as well as properly checking the

20 // queue status. (see e.g. example for gaspi_wait,

21 // wait_if_queue_full())

22

23 void pipelined_read_and_process(int num_chunks

24 , gaspi_segment_id_t segment_id_local

25 , gaspi_offset_t offset_local

26 , gaspi_rank_t rank

27 , gaspi_segment_id_t segment_id_remote

28 , gaspi_offset_t offset_remote

29 , gaspi_size_t chunk_size

30 , gaspi_queue_id_t queue_id

31)

32 {

33 const int nthreads = omp_get_max_threads();

34 const int num_initial_chunks = nthreads * 4;

35 int i;

36

37 // Start GASPI accumulate pipeline

38 for (i = 0; i < num_initial_chunks; ++i)

2

39 {

40 ASSERT (gaspi_read_notify (segment_id_local

41 , (offset_local+i*chunk_size)

42 , rank

43 , segment_id_remote

44 , (offset_remote+i*chunk_size)

45 , chunk_size

46 , i

47 , queue_id

48 , GASPI_BLOCK));

49 }

50

51 #pragma omp parallel

52 {

53 int const tid = omp_get_thread_num();

54

55 // For sake of simplicity we use notifications

56 // which are exclusive per thread.

57

58 gaspi_notification_id_t id, first = tid;

59 gaspi_notification_id_t next = first + num_initial_chunks;

60

61 while(first < num_chunks)

62 {

63 ASSERT (gaspi_notify_waitsome (segment_id_local,

64 , first

65 , 1

66 , &id

67 , GASPI_BLOCK));

68

69 gaspi_notification_t val = 0;

70 ASSERT (gaspi_notify_reset (segment_id_local

71 , id

72 , &val));

73

74 // process received data chunk

75 process(segment_id_local

76 , (offset_local+id*chunk_size)

77 , chunk_size

78 , id

79);

80

81 first += nthreads;

82 next += nthreads;

83

84 if (next < num_chunks)

3

85 {

86 // start next read, sustain pipeline.

87 ASSERT (gaspi_read_notify (segment_id_local

88 , (offset_local+next*chunk_size)

89 , rank

90 , segment_id_remote

91 , (offset_remote+next*chunk_size)

92 , chunk_size

93 , next

94 , queue_id

95 , GASPI_BLOCK));

96 }

97 }

98

99 }

1.0.1 gaspi read notify

The gaspi read notify variant extends the simple gaspi read with a notifi-
cation on the local side. This applies to communication patterns that require
tighter synchronisation on data movement. The local receiver of the data is no-
tified when the read is finished and can verify this through the procedure gaspi
waitsome. It is an asynchronous non-local time-based blocking procedure.

GASPI_READ_NOTIFY (segment_id_local

, offset_local

, rank

, segment_id_remote

, offset_remote

, size

, notification_id_local

, queue

, timeout)

Parameter:
(in) segment id local: the local segment to write to
(in) offset local: the local offset to write to
(in) rank: the remote rank to read from
(in) segment id remote: the remote segment ID to read from
(in) offset remote: the remote offset in bytes to read from
(in) size: the size of the data to read
(in) notification id: the local notification ID
(in) queue: the queue to use
(in) timeout: the timeout

4

gaspi_return_t

gaspi_read_notify (gaspi_segment_id_t segment_id_local

, gaspi_offset_t offset_local

, gaspi_rank_t rank

, gaspi_segment_id_t segment_id_remote

, gaspi_offset_t offset_remote

, gaspi_size_t size

, gaspi_notification_id_t notification_id

, gaspi_queue_id_t queue

, gaspi_timeout_t timeout)

function gaspi_read_notify(segment_id_local,offset_local,rank,&

& segment_id_remote, offset_remote,&

& size,notification_id,queue,&

& timeout_ms) &

& result(res) bind(C, name="gaspi_read_notify")

integer(gaspi_segment_id_t), value :: segment_id_local

integer(gaspi_offset_t), value :: offset_local

integer(gaspi_rank_t), value :: rank

integer(gaspi_segment_id_t), value :: segment_id_remote

integer(gaspi_offset_t), value :: offset_remote

integer(gaspi_size_t), value :: size

integer(gaspi_notification_id_t), value :: notification_id

integer(gaspi_queue_id_t), value :: queue

integer(gaspi_timeout_t), value :: timeout_ms

integer(gaspi_return_t) :: res

end function gaspi_read_notify

Execution phase:
Working

Return values:
GASPI SUCCESS: operation has returned successfully
GASPI TIMEOUT: operation has run into a timeout
GASPI ERROR: operation has finished with an error y

User advice: In contrast to the procedure gaspi write notify, the no-
tification in the procedure gaspi read notify carries the (fixed) noti-
fication value of 1. Similar to the procedure gaspi write notify a call
to gaspi read notify only guarantees ordering with respect to the data
bundled in this communication and the given notification. Specifically
there are no ordering guarantees to preceding read operations. For this
latter functionality a call to the gaspi wait procedure is required. y

5

Implementor advice: The procedure is not semantically equivalent to
a call to gaspi read and a subsequent call of gaspi notify, since the
latter aims at remote completion rather than local completion. Also this
call does not enforce an ordering relative to preceding read operations.
We note that the procedure gaspi read notify aims at massive concur-
rency rather than minimal read latency, hence it should be implemented
accordingly. y

2 Needed Resources

• none.

3 Additional (necessary) Changes to the Stan-
dard

• 8.3.3

For the procedures with notification, gaspi notify and the extendend
functions gaspi write notify and gaspi read notify, the function gaspi

notify waitsome is the correspondent wait procedure for the notified re-
ceiver side (which is remote for the functions gaspi notify and gaspi

write notify and local for the function gaspi read notify).

• additional user advice

User advice: One scenario for the usage of gaspi notify

waitsome inspecting only one notification is the following: The
local side posts a gaspi read notify call. Gaspi guarantees, that
if the notification has arrived on the local process, the posted read
request carrying the work load of the function gaspi read notify

has arrived as well. y

6

